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Abstract

Generating good quality and geometrically plausible
synthetic images of humans with the ability to control ap-
pearance, pose and shape parameters, has become increas-
ingly important for a variety of tasks ranging from photo
editing, fashion virtual try-on, to special effects and image
compression. In this paper, we propose a HUSC (HUman
Synthesis and Scene Compositing) framework for the real-
istic synthesis of humans with different appearance, in novel
poses and scenes. Central to our formulation is 3d reason-
ing for both people and scenes, in order to produce realistic
collages, by correctly modeling perspective effects and oc-
clusion, by taking into account scene semantics and by ad-
equately handling relative scales. Conceptually our frame-
work consists of three components: (1) a human image syn-
thesis model with controllable pose and appearance, based
on a parametric representation, (2) a person insertion pro-
cedure that leverages the geometry and semantics of the 3d
scene, and (3) an appearance compositing process to cre-
ate a seamless blending between the colors of the scene and
the generated human image, and avoid visual artifacts. The
performance of our framework is supported by both quali-
tative and quantitative results, in particular state-of-the art
synthesis scores for the DeepFashion dataset.

1. Introduction
Generating photorealistic synthetic images of humans,

with the ability to control their shape and pose parameters,
and the scene background is of great importance for end-
user applications such as in photo-editing or fashion vir-
tual try-on, and for a variety of data-hungry human sensing
tasks, where accurate ground truth would be very difficult
if not impossible to obtain (e.g. the 3d pose and shape of a
dressed person photographed outdoors).

One way to approach the problem would be to design
human models and 3d environments using computer graph-
ics. While the degree of realism increased dramatically in

narrow domains like the movie industry, with results that
pass the visual Turing test, such synthetic graphics produc-
tions requires considerable amount of highly qualified man-
ual work, are expensive, and consequently do not scale. In
contrast, other approaches avoid the 3d modeling pipeline
altogether, aiming to achieve realism by directly manip-
ulating images and by training using large-scale datasets.
While this is cheap and attractive, offering the advantage of
producing outputs with close to real statistics, they are not
nearly as controllable as the 3d graphics ones, and results
can be geometrically inconsistent and often unpredictable.

In this work we attempt to combine the relatively acces-
sible methodology in both domains and propose a frame-
work that is able to realistically synthesize a photograph of
a person, in any given pose and shape, and blend it veridi-
cally with a new scene, while obeying 3d geometry and ap-
pearance statistics. An overview is given in fig. 1. For the
first part of human synthesis, given a source image of a per-
son and a different target pose (or more generally, a target
3d body mesh), we want to generate a realistic image of the
person synthesized into the new pose. We would like that
all the elements included in the person’s source layout (ei-
ther clothing, accessories or body parts) to be preserved or
plausibly extended in the synthesis.

We propose to learn a dense displacement field, that
leverages 3d geometry and semantic segmentation (e.g. a
blouse moves differently than a hat; the leg moves differ-
ently than the head). This module produces a correction to
an initial body displacement field and is trained jointly with
the synthesis model within a single end-to-end architecture.

Finally, given an image of a person (real or synthesized)
and of a background scene, we want to generate a good
quality composite of the two. We argue that a realistic syn-
thesis should consider the physical properties of the scene
and of the human body, and also compensate for the dif-
ferent appearance statistics. With that in mind, we propose
to blend the foreground image with the background image,
at two levels: geometry and appearance. At the geometric
level, we want the foreground person, with its associated 3d
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Figure 1. Overview of our full pipeline HUSC. Inputs are a fore-
ground image of a person, a background scene with its associated
depth map and semantic labeling, and a target 3d body model.
First, we perform ground plane estimation of the background
scene. Within the Geometrical Compositing stage, we sample
a valid 3d location for the target body and perform the associated
viewpoint transformation and alignment with the supporting plane
normal. The newly updated target body shape, together with the
input image encoding the desired appearance, are passed to the hu-
man synthesis network, HUSC-S. The resulting synthesized fore-
ground image is rendered in the background scene, by properly
accounting for depth ordering constraints. Finally, its appearance
is altered by our learned Appearance Compositing network in
order to produce the final result.

body model, to respect the 3d space and scale constraints of
the scene, be visible according to the scene depth ordering,
and be placed on a plausible support surface (e.g. floor). At
the appearance level, we would like that the two sources
blend naturally together, without the undesirable cut-and-
paste look. To summarize, our contributions are as follows:
(a) a realistic human appearance translation task, with state-
of-the-art results, (b) a realistic data augmentation proce-
dure, which allows for the synthesis of complex scenes con-
taining humans, with available pseudo-ground-truth labels
such as: pose, shape, segmentation and depth.

2. Related Work

Human Image Synthesis. An important body of work in
the literature is dedicated to image synthesis [9, 25, 12, 34,
15, 32, 39, 20, 13], and more specifically to the task of syn-
thesizing photo-realistic images of humans [37, 21, 11, 22,
29, 14, 7, 4, 10]. Among these, a significant proportion –
our work included – have focused on synthesizing humans
given a condition image and a desired target pose. In [7] the

authors propose a variational U-Net for conditional image
generation. Their method synthesizes images of humans
based on 2d pose information and a latent appearance repre-
sentation learned with a variational auto-encoder. We lever-
age a richer shape and position representation in the form
of a 3d body model and learn a dense correspondence field
between the pose and shape of the source person and that
of the target. This motion field is extended beyond body re-
gions to clothing and hair. [4] learns a transformation grid
based on affine and thin-plate spline embedding, which is
used to warp the condition image in the desired target posi-
tion.

In contrast, our learned displacement field allows for
dense arbitrary transformations. Our work relates to [29],
through the use of deformable skip connections for warping
the features maps of the conditioning image, in the location
of the desired target pose. However, there are two major dif-
ferences between our method and the DSCF net proposed in
[29]: i) In DSCF net, the image features are warped with an
affine transformation obtained through an optimization step
both at training and at testing time.

ii) The deformable skip connection in DSCF net trans-
form feature-maps, that correspond to coarse 2d body joint
activations, while our learned displacement field is densely
computed over the entire person layout (body and clothing).
Different from [37](HAT), we learn end-to-end the dense
correspondence field, coupling it together with the synthesis
part of our network. HAT operates in two different stages:
one that synthesizes color only on the target body shape,
and one that tries to further complete the color on the out-
side regions. This latter stage is completely detached from
the initial source image and is guided only by a target cloth-
ing segmentation.

General data augmentation through image synthesis.
Combining different sources of synthetic data with real
data, and then generating a realistic composition of the both,
is an increasing popular research direction. It has been suc-
cessfully applied to various tasks, such as semi-supervised
foreground-background segmentation [27, 1, 6], object de-
tection [5, 6] or 3d object pose estimation [1]. Different
than [1], we do not have access to a realistic renderer that –
in our case – produces humans with various garments and
different poses. That, in itself, represents another complex
research topic. The two cut-and-paste methods [6, 27] use
simple blending techniques, and only for the foreground ob-
ject, while we propose to learn a blending for both the back-
ground and foreground, accordingly. Note that while [1]
and [6] take the 3d geometry of the scene into account, they
only consider 3d rigid objects.

Human Synthesis on Backgrounds. Most of the previ-
ous works focus solely on the human appearance, and are
not concerned with a natural blending within a background



Figure 2. (Left) Overview of HUSC-S. Our pipeline receives as input (shown inside green boxes) a source monocular image of a person,
Is, and a desired target 3d body mesh, Bt. We estimate for Is a 3d body mesh, Bs, and a clothing segmentation, Cs. From Bs and Bt, we
can compute a dense body displacement field MB , and also their respective dense pose representations, Ds and Dt. Our network receives
as input to displacement field estimator (A) on the top branch, all the available information, for both source and target. It outputs an
update ∆M that is added to MB to produce the final displacement field, M . (Right) Detailed view of HUSC-S. The appearance encoder
(B) receives as input only the information pertaining to the source. It produces features maps at different resolutions that are all displaced
according to M . We show an example of such a transformation at the lowest resolution. The topology encoder (C) operates on the target
dense pose, Dt, and is input to the decoder D to help guide the synthesis, alongside all the feature maps coming from B. The output of our
network is the final synthesized image I

′
t (shown inside the red box, left).

image. There are some works that consider synthesizing the
entire scene, such as [31], where textured human body mod-
els are overlaid over random backgrounds. This method
does not consider the semantic and the 3d structure of the
scene, hence, the human model is often placed in unnatural
locations. Moreover, the model’s dimensions and illumina-
tion do not match the ones of the surrounding environment.
Another relevant work is the one of [3], that takes as in-
put an image containing a human and its desired 2d skele-
ton configuration. The method changes the position of the
human to the given pose configuration, while retaining the
background scene and inpainting the missing areas.

Image Adjustment.

Our work on image compositing is inspired by [30],
where given an initial composite image and a foreground
mask, a deep network learns to adjust the foreground re-
gion such that it becomes compatible (harmonized) with the
background region. While their method is applied for arbi-
trary foreground objects, we focus on the specific case of
compositing humans into backgrounds. We use a different
type of encoder-decoder architecture with ResNet blocks
inspired by [32]. Moreover, our method does not need an
extra task of semantic scene parsing in decoding the harmo-
nized image.

3. Human Synthesis

Overview. Given a source RGB image Is of a clothed per-
son, our goal is to realistically synthesize the same per-
son in a given novel pose, in our case represented by a 3d
body model, Bt. Different from previous works that rely
mostly on 2d joint to model the pose transformation, one
of our key contributions lies in incorporating richer repre-
sentations, such as 3d body shape and pose which improves
the predictions in complicated cases – e.g. determining how
the position/occlusion of the body and clothing/hair change
with the motion/articulation of the person. Moreover, a 3d
body model is required to plausibly place the person in the
scene and allows us to have full control over 3d body shape,
pose, and the scene location where the synthesized person
is inserted.

Our human synthesis model is a conditional - GAN [32]
that consists of a generator G and a discriminator D. Given
a source image Is and a condition pose Bt, the task of the
generator is to produce an output image I ′t = G(Is) of the
person in Is having the body pose Bt. The discriminator’s
objective is to distinguish between real and generated im-
ages while the generator’s task is to produce fake images
which are able to fool the discriminator.

Starting from an encoder-decoder architecture, our key



contribution is the addition of a novel Displacement Field
Estimator in the generator, that learns to displace features
from the encoder, prior to being decoded. Our modified
architecture also relies on the semantic segmentation (i.e.
clothing and body parts) of the source image, Cs, and on an
estimated 3d body model of the source, Bs. An overview
of our generator can be seen in fig. 2. We use a multiscale
discriminator as in [32].

3d Body Model Estimation. For estimating the 3d body
model of an image, we use the SMPL model [19] and
follow a similar procedure to [35], but instead apply the
method of [36] for 3d pose estimation. The SMPL model
is a parametric 3d human mesh, controlled by pose param-
eters θ ∈ R24×3 and shape parameters β ∈ R10, that gen-
erate vertices V(θ,β) ∈ R6890×3. We fit this model to
predicted 2d keypoints and semantic segmentation, under
a full-perspective model with fixed camera intrinsics. We
refer to the tuple (θ,β,T) as a model B, where T is the
inferred camera-space translation.

Dense Body Correspondences. Given two body meshes
(i.e. a source and a target) we can compute a 3d displace-
ment field M3d

B of the visible surface points on the source
Vs(θs,βs), to the target surface points Vt(θt,βt) (see fig.
2, top right corner).

M3d
B = Vs(θs,βs)−Vt(θt,βt) (1)

The displacement field is projected in 2d, and encoded
onto the target shape, representing the offset from where
information is being transferred. We will refer to this final
2d displacement field as MB = P(M3d

B ).

Topological Representation. From a 3d body mesh we ob-
tain a 2d dense pose [2] representation for both the source,
Ds, and the target, Dt. The dense pose representation en-
codes at pixel level, for the visible 3d body points, the se-
mantic body part it corresponds to, alongside the 2d coordi-
nates in the local body part reference system. Each 3d body
point will therefore have a unique associated value using
this encoding scheme.

Image Synthesis Network. Our image synthesis network
generator (HUSC-S) has two novel computational units: a
Displacement Field Estimator, and a Topology Encoder.
The former learns an update, ∆M , for the displacement
field MB , which is meant to either correct the warping in-
duced by an erroneous fitting, or capture motions that fall
outside the fitted model (e.g. hair, clothing). The final dis-
placement field is given by M = ∆M + MB , and will
be used to place source features at the correct spatial lo-
cation in the target image, to facilitate decoding and thus,
synthesis. This update step is computed on geometric and
semantic features, as follows: Is, Ds, Dt, Cs and MB .

An Appearance Encoder module extracts features As

based on the RGB image Is, a pre-computed clothing seg-
mentation Cs (using [8]) and the source dense pose, Ds.
The updated displacement field M is used to warp the ap-
pearance features As and produce warped image features
A

′

t. These are then passed through a series of residual
blocks. The result is concatenated with an encoding of
Dt, produced by the Topology Encoder, and then passed to
an Appearance Decoder to generate the synthesized image,
I

′

t . The addition of the encoded Dt is useful to the decod-
ing layers, because the underlying body-part topology, on
which they operate, is exposed to them. We add deformable
(i.e. warped by our estimated displacement field) skip con-
nections between the Appearance Encoder and the Appear-
ance Decoder, to propagate lower level features directly to
the decoding phase.

Training. At training time, we are given pairs of images
{(Is, It)} which are used to learn both the parameters of
the discriminator, θd, and those of the generator, θg , using a
combined L1 color loss, a perceptual VGG loss [13] and a
discriminator GAN loss.

L = LGAN + λLL1 + γLV GG (2)

LGAN = E(Is,It)[logD(Is, It)] + EIs [log(1−D(Is,G(Is))]
(3)

LL1 =
∑
(u,v)

||It(u, v)− I ′t(u, v)||1 (4)

LV GG =

N∑
i=1

1

Ni

∣∣∣∣∣∣V GG(i)(It)− V GG(i)(I ′t)
∣∣∣∣∣∣
1

(5)

N represents the number of layers considered from the
VGG network, Ni is the dimension of the output features
and V GG(i)(I) are the activations of the ith layer on image
I .

4. Human and Scene Compositing
In image compositing, we are interested in combining

two visual elements from different sources into a single im-
age, creating the impression that they are actually part of the
same scene. In order to create this effect, the addition of the
person in the scene should respect the physical laws of the
real world, and the images statistics of the person (given by
illumination, contrast, saturation, resolution) should match
those of the scene. To meet our goals, we consider that we
have a background image with associated depth and seman-
tic information, and a foreground image of a person (syn-
thesized or real) with an estimated 3d body model (see fig.
1 for an overview).



4.1. Geometrical Compositing

We are interested in generating images that respect real
world physical constraints, such as: people are (usually) sit-
ting on a ground plane, do not penetrate objects in the scene
and have plausible body proportions considering the scale
of the environment. In order to estimate a ground plane, we
select all 3d points that correspond to the semantic classes
associated with a floor plane surface. We fit a plane using a
least-squares solution, combined with a RANSAC approach
to ensure robustness to outliers. This is necessary to miti-
gate the noise in the depth signal.

In order to choose a physically plausible position for the
body model in the scene, we sample 3d floor locations on a
regular grid. To make the model perpendicular to the plane,
we compute a rotation matrix that aligns the ”up” vector of
the model to the plane normal, and multiply it with the orig-
inal rotation matrix. Also, due the computed camera-space
translation, the relative camera orientation will change. Ad-
justing for both the rotation induced by the plane normal
alignment, and the camera point-of-view, involves a rota-
tion of the original SMPL model. To be able to correct the
appearance change, associated with this transformation, we
run our HUSC-S component for the foreground image and
its newly created target 3d model. Notice that this is not at
the reach of other methods, as they do not have the means
to correct their foreground hypotheses based on 3d transfor-
mations.

Finally, we test if the final mesh model collides with
other 3d points in the scene. We approximate the body
model with simple 3d primitives and check for intersec-
tions. If no collisions are detected, we can then place the
foreground image. We update the color of a pixel according
to the relative ordering of points in depth, belonging to both
the model and the scene (e.g if the model is behind a desk,
then some of its body parts will be occluded).

One important property of this procedure is its scalabil-
ity: none of the components requires human intervention,
as the whole pipeline is completely automated. The Incep-
tion Score [28], or other metrics, can be used to detect and
prune the possible poor quality generated images.

4.2. Appearance Compositing

In order to create a natural composition of a foreground
and background image pairs, we build on a methodology
originally proposed in [30] for generating realistic compos-
ites of arbitrary object categories over backgrounds. (see
fig. 3 for an overview). We learn an adjustment of the color
and boundaries of a human composite such that it blends
naturally (in a statistical, learned sense) in the scene. For
training we use images with humans from COCO. We alter
image statistics inside the human silhouette so that it looks
unnatural, thus simulating a silhouette pasted on a differ-
ent background. The network learns to recreate the original

image.

Figure 3. Our Appearance Compositing architecture is represented
by an encoder-decoder network inspired by the generator used in
[32]. It takes as input the geometrical composited imaged and a
figure ground segmentation of the person, and corrects his appear-
ance in order to naturally match the scene of insertion.

We make a series of adjustments to the methodology pro-
posed in [30]. First, we restrict the problem to generating
realistic composites of only humans and backgrounds. We
build our model based on a different, more recent network
architecture [32] and we drop the Scene Parsing task since
our compositing problem is defined on a specific category
(humans). The network’s input is a concatenation of the
modified image and the binary figure-ground mask ( see fig.
3). We add skip connections between the encoder and de-
coder, such that the network can easily access background
features in the decoding stage. We also remove the batch
normalization layers, so that the original image statistics are
preserved. We train the network by using a combined L1
color loss, a perceptual VGG loss [13] and a discriminator
GAN loss.

5. Experimental Results

Evaluation metrics. To test the quality of our generated
images we use several metrics: the Learned Perceptual Im-
age Patch Similarity metric (LPIPS) [38], the Inception
Score (IS) [28] and the Structural Similarity Index (SSIM)
[33]. The LPIPS metric was learned using a database of
images on which different distortions were applied. IS pro-
vides a measure of how realistic a generated image is. This
is obtained by learning a correlation with human judgment
over synthetic versus real images. However, according to
[24], the IS score of the images present in the DeepFashion
dataset is already very low (an average of 3.9 vs an average
of 11.2 for CIFAR-10 images), which makes this metric not
conclusive with respect to the level of realism of the gener-
ated samples. The SSIM score measures the level of struc-
tural degradation in the synthesized image, compared to the
reference image.

5.1. Human Synthesis

Datasets used. We train our model on the DeepFashion
(In-shop Clothes Retrieval Benchmark) [18] dataset, which



Figure 4. Sample results on the DeepFashion dataset. From left
to right: source image, target image, HUSC-S w/ fixed body dis-
placement field, HUSC-S w/ learned displacement field, HUSC-S
full. Notice the superior quality of the images synthesized with
learned displacement field.

contains 52, 712 in-shop clothes images and ≈ 200, 000
cross-pose/scale pairs. We use the train/test split provided
by [29], containing 101, 268 train and 8, 616 test pairs of
the same person in two different poses.

Quantitative Evaluation. In table 1 we provide quanti-
tative results of HUSC-S on the DeepFashion dataset and
compare them with previous works. In addition, we per-
form an ablation study to show the impact of the learned
displacement field in the quality of the generated images.
Our first baseline (HUSC-S w/o displacement field) is a
simplified version that does not use a displacement field
and its associated encoder. The source image, Is, source

dense pose Ds, source clothing segmentation Cs, and tar-
get dense pose Dt are concatenated and fed directly to the
Appearance Encoder. As can be seen in table 1, this is a
strong baseline, achieving competitive results with previous
works under the IS metric, and state-of-the-art results when
measuring SSIM. Its strength lies in leveraging more com-
plex pose and shape information in the form of dense pose
(previously only used by DPT [24]). In the second baseline
(HUSC-S w/ fixed body displacement field), we compute
the body displacement field between the 3d body model of
the source image and that of the target image, and use it to
warp the encoded appearance features of the source. Even
if this displacement field is fixed and limited only to body
regions, it still improves the results over the first baseline.
In the third baseline, we use a dedicated Topology Encoder
(see fig. 2) to learn a correction of the initial body displace-
ment, that is extended to clothes and hair. The appearance
features of the source image are warped with the corrected
motion field, right before the residual blocks computation.
By doing so, we obtain the largest performance increase, as
well as state-of-the-art results on both IS and SSIM scores.
This shows the positive impact that the learned displace-
ment field has on the quality of the generated images. The
full method (HUSC-S full) adds two elements: i) the de-
formable skip connections between the encoder and the de-
coder for faster convergence and ii) the target dense pose
in the decoding phase, such that information on the posi-
tion in which the person should be synthesized is explicitly
available.

Methods IS [28] ↑ SSIM [33] ↑
pix2pix[12] (CVPR17) 3.249 0.692
PG2[21] (NEURIPS17) 3.090 0.762
DSCF[29] (CVPR18) 3.351 0.756
UPIS[26] (CVPR18) 2.970 0.747
BodyROI7[22] (CVPR18) 3.228 0.614
AUNET[7] (CVPR18) 3.087 0.786
DPT[24] (ECCV18) 3.61 0.785
SGW-GAN[4] (NEURIPS18) 3.446 0.793
DIAF [16] (CVPR19) 3.338 0.778

HUSC-S w/o displacement field 3.3876 0.8035
HUSC-S w/ fixed body displacement field 3.4541 0.8016
HUSC-S w/ learned displacement field 3.6343 0.8049
HUSC-S full 3.6950 0.8135

Table 1. Evaluation on the DeepFashion dataset. We perform sev-
eral ablation studies, showing that learning the displacement field,
compared to no or fixed body displacement, performs better in
terms of both IS and SSIM scores. Our full method obtains state-
of-the art results when compared to previous works.

Qualitative Evaluation. A visual comparison of the base-
lines and the full method can be seen in fig. 4. The first col-
umn represents the source image, the second column is the
ground truth target image, while the last three columns are
outputs of the following methods: HUSC-S w/ fixed body



displacement field, HUSC-S w/ learned displacement field
and HUSC-S full. Notice the superior quality of the images
synthesized with learned displacement (columns 4 and 5) in
terms of i) pose: the order in which the legs overlap in the
first image, ii) clothing details: the folds of the dress in the
fourth image look more realistic when using learned motion
field, iii) color/texture preserving: the color in the third row
and the floral pattern in the fifth row better resemble those
of source image and iv) face details: in all cases the face of
the synthesized person is sharper and better resembles the
source person when using the full method. Fig. 4 shows that
our method can synthesize high-quality images of persons
in a wide range of poses and with a large variety of clothing
types, both closely fitted to the body and loose. Moreover,
HUSC-S allows altering the underlying 3d pose and shape
of the desired target person, while correspondingly adjust-
ing their appearance. Please see fig. 7 for examples of body
proportions variations, and fig. 6 for synthesized images of
the same person in various poses. Examples of failure cases
of our network are shown in fig. 8.

5.2. Appearance and Geometrical Compositing

Datasets used. For training the Appearance Compositing
network, we use the COCO [17] dataset because of its large
variety of natural images, containing both humans and asso-
ciated ground truth segmentation masks. For the Geomet-
ric Compositing pipeline, we sample various backgrounds
from the NYU Depth Dataset V2 [23]. This dataset con-
tains 1, 449 RGB images, depicting 464 indoor scenes cap-
tured with a Kinect sensor. For each image, the dataset pro-
vides corresponding semantic annotations as well as aligned
depth images. The choice of this dataset is motivated by
multiple factors: the variety of backgrounds it provides,
and the annotated depth and semantic class labels, that can
be used to infer physically plausible space configurations
where a human model can be placed, while obeying per-
pixel depth ordering. We consider the semantic classes
”floor”, ”rug”, ”floor mat” and ”yoga mat” for our support
surface.

Quantitative Evaluation. Table 2 shows the performance
of our Appearance Compositing network on images from
the COCO validation dataset under the LPIPS metric. We
first show the LPIPS distance between the initial images and
their randomly perturbed versions (0.0971). Then we show
how this difference is considerably reduced when we apply
our Appearance Compositing network, that uses VGG and
L1 loss (from 0.0971 to 0.0588). Note that there is also a
considerable reduction in the standard deviation. The re-
sults further improve if we add a discriminator head to our
network (from 0.0588 to 0.0542 ).

In table 3 we show the Inception Score of 1000 images
generated by HUSC with humans on diverse backgrounds:

LPIPS score [38]
Reference Full image ↓ Foreground ↓
Perturbed 0.0971± 0.0596 0.2569± 0.0811
Refined (L1+VGG loss) 0.0588± 0.0267 0.1317± 0.0514
Refined (L1+VGG+GAN loss) 0.0542± 0.0243 0.1165± 0.0480

Table 2. Learned Perceptual Image Patch Similarity metric
(smaller the better) on 1000 images from Microsoft COCO vali-
dation dataset.

with only the Geometrical Compositing, and when the Ap-
pearance Compositing module is also added. The score is
improved when correcting the appearance of the geomet-
rical composites, which indicate that the images become
more realistic. As a comparison baseline, we checked the
IS of the background images alone. Note that there is only
a less than 10% drop, in the score of the final composite im-
age, as compared to the original (real), background image.

Image set Inception Score [28] ↑
NYU Depth Dataset V2 6.96
HUSC (Only Geometrical Compositing) 6.23
HUSC 6.33

Table 3. Inception Score (higher the better) for images generated
by our method with and without appearance compositing. We also
show the Inception Score for the original background images se-
lected from the NYU dataset.

Qualitative Examples. In fig. 5 we show examples of
images generated by our proposed HUSC framework. For
each example, we show the source image, the dense pose
associated with the target body model and the resulting
synthesized scene. Notice that the persons are naturally
blended in the background scene at both geometrical and
appearance levels. In fig. 9 we illustrate before and after
results for our appearance compositing network. It can be
noticed that that our method adapts the foreground to the
ambient scene context. Please see the supplementary mate-
rial.

6. Conclusions
We have presented a HUman Synthesis and Scene

Compositing framework (HUSC ) for the realistic and con-
trollable synthesis of humans with different appearance, in
novel poses and scenes. By operating entirely in the 3d
scene space rather than image space, except for late global
image adaptation stages, and by taking into account scene
semantics, we are able to realistically place the human im-
postor on support surfaces, handle scene scales and model
occlusion. Moreover, by working with parametric 3d hu-
man models and dense geometric correspondences, we can
better control and localize the appearance transfer process
during synthesis. The model produces pleasing qualitative
results and obtains superior quantitative results in the Deep-



Figure 5. Sample images generated by our proposed framework. For each example, we show the input source image, the target 3d body
mesh, and a scene with a geometrically plausible placement of the synthesized person. Please note that our framework allows for a
positioning behind various scene objects, and the insertion of multiple people without breaking any geometrical scene properties.

Figure 6. Appearance transfer results of a single RGB image into various poses. The first image of each row represents the source, while
the others are obtained by synthesizing that person in a different pose.

Figure 7. Human synthesis with varying shape parameters. (Left) Source image. (Center) Synthesized image with same shape parameters
as the source. (Right) Synthesized image with larger shape parameters as the source.

Fashion dataset, making it practically applicable for photo editing, fashion virtual try-on, or for the realistic data aug-



Figure 8. Example of failure cases. (Left) Source image. (Center) Ground truth target image. (Right) Synthesized image. When the body
model of the target image is misfitted, small body parts such as hands may become blurry or disappear (first example). Clothing items that
are not visible in the source image (shoes) can be generated inconsistently since we do not enforce a symmetry of the generated clothing
(second example). Clothing completion in the synthesized image may not respect the full level of detail in the source: the synthesized
straps are not present in the source image (third example).

Figure 9. Before and after Appearance Compositing. We learn an
adjustment of the color and boundaries of a human composite such
that it blends naturally (in a statistical, learned sense) in the scene.

mentation protocols used for training large scale 3d human
sensing models.
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