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Abstract

We present an approach for automatic 3D human pose
reconstruction from monocular images, based on a discrim-
inative formulation with latent segmentation inputs. We ad-
vance the field of structured prediction and human pose re-
construction on several fronts. First, by working with a pool
of figure-ground segment hypotheses, the prediction prob-
lem is formulated in terms of combined learning and infer-
ence over segment hypotheses and 3D human articular con-
figurations. Besides constructing tractable formulationsfor
the combined segment selection and pose estimation prob-
lem, we propose new augmented kernels that can better en-
code complex dependencies between output variables. Fur-
thermore, we provide primal linear re-formulations based
on Fourier kernel approximations, in order to scale-up the
non-linear latent structured prediction methodology. The
proposed models are shown to be competitive in the Hu-
manEva benchmark and are also illustrated in a clip col-
lected from a Hollywood movie, where the model can infer
human poses from monocular images captured in complex
environments.

1. Introduction

Reconstructing the tridimensional human pose and mo-
tion of people in the office, on the street, or outdoors based
on images acquired with a single (or even multiple) video
camera(s) is one of the open problems in computer vision.
The difficulties compound: people have many degrees of
freedom, deform and articulate, and their appearance varies
widely as they span a significant range of body proportions
and clothing. When analyzing people in realistic imaging
conditions, the backgrounds cannot be controlled and peo-
ple can also be occluded by other objects or people.

The 2D to 3D imaging relations and their ambiguities
in the articulated case under point-wise joint correspon-
dences are relatively well understood both in the monocular
and in the multi-camera setting; several classes of meth-
ods exist: generative sampling strategies [8, 5], discrimi-

native methods based on multi-valued predictors[1, 24], as
well as methods that combine discriminative prediction and
verification [20]. Techniques to reduce search complex-
ity to low-dimensional non-linear manifolds have gained
popularity[23, 25, 22], partly for efficiency considerations,
but also as means to handle measurement ambiguities or
missing data resulting from occlusion. Output manifold as-
sumptions are just one way to model structure. More gen-
erally would be to use structured kernels[13].

Recently there is a trend towards operation in realistic
environments where people are viewed against more com-
plex backgrounds and in a more diverse set of poses. Han-
dling such environments would be in principle possible by
means of integrated systems that jointly combine person de-
tection (or localization) and 3D reconstruction[13, 3, 2].
However human detectors[10] cannot always detect gen-
eral human poses, and even when they do, figure-ground
needs to be resolved from the bounding box before 3D
pose can be predicted reliably (it is agreed that predictors
based on silhouettes generalize relatively well if the in-
put quality is good and the training distribution matches
sufficiently well the set of human poses typical of the
problem domain[1, 24, 20]). Another approach would
be to use more detailed 2D human part-based models for
localization[19, 2, 11, 9]. But 2D pictorial models usually
come with a relatively high false positive rate and encounter
difficulties localizing people viewed under sharp 3D effects
(foreshortening). Closest to our goal of simultaneously ob-
taining segmentations and 3D poses is Posecut[4], a pose
estimation method which alternates between fitting a 3D
skeletal model to a silhouette (standard generative fittingor
alignment), and re-estimating the silhouette (solving a bi-
nary MRF) using the predicted skeleton boundary as a shape
prior.

In this paper we pursue a constrained discriminative ap-
proach that jointly estimates a quality selector function over
a set of latent figure/ground segmentations (obtained using
parametric max-flow and ranked based on mid-level proper-
ties) and a structured predictor. We introduce several novel
elements that touch upon structural modeling, efficiency,
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Figure 1. Illustration of our human localization and 3D posereconstruction framework. Given an image (left), we extract a set of putative
figure-ground segmentations by applying constraints at different locations and spatial scales in (monocular) images,using the Constrained
Parametric Min-Cuts (CPMC) algorithm[6]. The method is tuned towards segments that exhibit generic mid-level object regularities
(convexity, boundary continuity), but uses no person priors. Different segments extracted by CPMC are shown in images 2, 3 and 5,6
respectively. Given segment data together with 3D human pose information, we will jointly learn a latent structured model that knows both
how to select relevant segments and how to predict accurate 3D human poses, conditioned on that input selection. Overall, we contribute
with a latent formulation based on Kernel Dependency Estimation, with novel structured kernels that better encode correlations among
the human body parts, and with Fourier kernel approximations that enable linear training for large datasets. Automatic3D reconstructions
obtained by our method are shown in images 4 and 7, with renderings based on synthetic graphics models.

and experimental realism.
First, a large set of figure-ground segments is generated

for each image, at multiple locations and scales using Con-
strained Parametric Min-Cuts (CPMC), a recent segmenta-
tion procedure that has proven to be effective in a number
of image segmentation[6] and labeling tasks[15]. We cast
the problem of automatic localization and 3D human pose
estimation as combined inference over segments and human
articular configurations that give optimal prediction.

Second, we give a novel yet general and tractable for-
mulation for latent structured models (with latent kernel de-
pendency estimation l-KDE as a special case), as applica-
ble to localization and continuous state estimation. We also
propose augmented kernels for human pose and show that
these are quantitatively better at representing complex inter-
dependencies among the body parts than their unstructured
counterparts. The computational cost of using accurate non-
linear kernels is one of the main challenges in scaling the
methodology to large datasets.

Our third contribution is therefore the formulation of la-
tent structured models like l-KDE or structured SVM[13] in
the framework of random Fourier approximations[18, 26,
16]. We show that under a suitable change of variables,
the calculations become linear, with primal formulations,
as well as gradient calculations expressed directly in the
linear space induced by the Fourier representation. We re-
port quantitative studies in the HumanEva benchmark[21]
and also show that our segmentation-based latent structured
models produce promising 3D reconstruction results for
people in a variety of complex poses, and filmed against
more complicated backgrounds than previously.

2. Segmentation-based Pose Prediction

Our goal is to investigate the continuous structured pre-
diction problem, with human pose estimation as a special
case, under multiple, imperfect input hypotheses. Input seg-
ments that partly align with the person boundaries contain

important cues for prediction. However, among imperfect
segments, it is not obvious which measurement would be
a good indicator of the usefulness of a segment for pose
prediction. Segments with the same 70% (pixel union over
intersection) overlap to the ground truth can be very differ-
ent: some may miss limbs of the person, some may miss the
head and some may cover the person and some background.
Conceptually, pose estimation errors will differ among dif-
ferent imperfect segments, an observation confirmed by our
experiments.

Because a clear-cut definition of segment quality remains
elusive, in this paper we seek to learn a task specific func-
tion from data—one that quantifies whether a correct pose
can be predicted from a segment. Input quality is in this
respect latent, and can only be indirectly inferred by the ex-
tent an input is effective for prediction. We cast the joint
segment selection and pose prediction problem as estimat-
ing two functions, a pose predictorf and a segment qual-
ity selectorg. During testing time, the quality functiong
selects the most suitable segment, thenf performs output
prediction on this segment. Namely,

y = f(I) = f(argmax
h

g(rIh)) (1)

wherey is aD-dimensional vector of 3D relative joint posi-
tions,I can either be an image, or a region-of-interest in an
image, assumed segmented intoN figure-ground hypothe-
sesSI = {rI1, . . . , r

I
N}. By abuse of notation, we also use

rIi to represent thed dimensional descriptor extracted on the
segment;yI denotes theD dimensional ground truth pose
for imageI andsI is the ground truth segment.

Learning is performed by optimizingf andg jointly. A
conceptual formulation can be:

min
f ,g

∑

I

∑

h∈I

g(rIh)‖f(r
I
h)− yI‖2 + λg‖g‖

2 + λf‖f‖
2

s.t. g(rIh) ≥ 0,max
h∈I

g(rIh) ≥ 1, ∀I (2)

where‖g‖ and ‖f‖ are norms (e.g., RKHS norms [12])



to prevent over-fitting. The formulation is similar in
spirit to the Multiple Instance Learning Problem (e.g.,
[17]). Minimization of the objective function requires that
g(rIh)‖f(r

I
h) − yI)‖2 is small. Therefore, the quality func-

tion g should give higher scores to segments that have low
prediction error. To make the formulation practical,g needs
to be always positive. Also, in order to avoid degeneracies
e.g., g(rIh) ≡ 0 at least one segment in each image must
have a good score (g(rIh) > 0).

We take a logistic formulation and selectg(rIh) =
1

1+exp(w⊤
g Φg (rIh))

to ensure positiveness. However it is not

obvious how to set a convex constraint to avoid these de-
generacies. For example a constraint like:

∑

h∈I g(r
I
h) ≥ 1

is not convex. We choose instead to introduce constraints
on the sum:

∑

h∈Iw
⊤
g Φg(r

I
h). Since a smallerw⊤

g Φg(r
I
h)

implies a largerg(rIh), making the sum small makes some
g(rIh) large. We use the binomial log-likelihood loss
L(x) = log(1 + 2 exp(x)) as a soft penalty on large values
of

∑

h∈Iw
⊤
g Φg(r

I
h). Putting it together, the optimization

problem can be recast as follows:

min
f ,wg

∑

I

∑

h∈I

1

1 + exp(w⊤
g Φg(rIh))

‖f(rIh)− yI‖2

+λs

∑

I

log(1 + 2 exp(
∑

h∈I

w⊤
g Φg(r

I
h)))

+λg‖wg‖
2 + λf‖f‖

2 (3)

whereλg, λf andλs are regularization parameters.
A quite subtle point in the optimization is the balance be-

tween the first and the second term in the objective. As ar-
gued before, the second term tends to driveg(rIh) large. But
a largeg value for all segments leads to large total weights
and a higher weighted prediction error. Balancing the two
terms in the optimization provides an appropriate quality
function g which outputs large values for segments more
suitable for prediction, and small values otherwise.

To solve the problem, we use alternating minimization
on f andg (Algorithm 1). Estimation off andg then can be
done via any standard approaches. We have experimented
with both kernel models and linear models based on random
Fourier features (described in Sec. 2.2). The estimation
of g is an unconstrained optimization which can be solved
using an LBFGS algorithm provided,e.g. in theminFunc
package1. The optimization forf is a weighted regression,
as the second term does not take effect. More expensive
options for learningf , including a structured SVM model,
are given in a companion technical report [14].

2.1. Kernel Dependency Estimation

Complex inference problems with interdependent inputs
and outputs require models that can represent correlations
both in the input and in the output explicitly. An efficient

1http://people.cs.ubc.ca/schmidtm/Software/minFunc.html

Algorithm 1 Algorithm for latent structured learning.

1: {Initialization of f using ground truth segments}
2: minf

∑

I ‖f(s
I)− yI‖2 + λf‖f‖

2

3: while not convergeddo
4: {Learn the segment ranker}
5: minwg

∑

I

∑

h∈I
1

1+exp(w⊤
g Φg (rIh))

‖f(rIh) − yI‖2 +

λs

∑

I log(1+2 exp(
∑

h∈I w
⊤
g Φg(r

I
h)))+λg‖wg‖

2

6: g(rIh) =
1

1+exp(w⊤
g Φg(rIh))

7: {Learn the pose predictor with the new weights}
8: minwf

∑

I

∑

h∈I g(r
I
h)‖wf

⊤ΦX (rIh)−ΦY (yI)‖2+
λf‖wf‖

2

9: f(rIh) = argminy ‖wf
⊤ΦX (rIh)− ΦY (y)‖2

10: end while

solution to model dependencies is kernel dependency esti-
mation (KDE) where multi-dimensional continuous outputs
are non-linearly decorrelated by kernel PCA. Prediction is
then redirected to the kernel principal component subspace.
Since in this new space dimensions are orthogonal, regres-
sion can be performed independently on each latent dimen-
sion. We use KDE as an alternative to independent-output
regression for learning off . Based on (3) we consider a
weighted KDE model with weightsg(rIh) assigned to each
segment

min
wf

∑

I

∑

h∈I

g(rIh)‖wf
⊤ΦX (rIh)− ΦY (yI)‖2 + λf‖wf‖

2

(4)
whereΦX : Rd → R

m is a non-linear map applied to the
inputs andΦY : RD → R

n is an orthogonal kernel PCA
embedding of the targets.

Remarkably, the learning problem (4) can be solved in
closed form [7] with parameters given by

wf = (M⊤
XΥMX + λf I)

−1M⊤
XΥMY (5)

whereΥ is the diagonal matrix with elementsg(rIh),MY =
[ΦY (y1) . . .ΦY (yN )]⊤ theN × n matrix of outputs and
similarlyMX theN ×m matrix of input features.

Given an input and a model, the output is computed by
solving for the pre-image of the projection in the original
pose space. In this case we compute the minimumℓ2 dis-
tance between the reconstruction and the output in the latent
(feature) space

y⋆
h = f(rIh) = argmin

y

‖wf
⊤ΦX (rIh)− ΦY (y)‖2 (6)

where in testing the segment is selected based on (1).
The KDE regression framework is simple and efficient in

both training and testing. Since no inference is performed
during training, onlyn standard regressors (following ker-
nel PCA on outputs) need to be estimated. The training is
significantly faster than alternatives such as structural SVM
(see our technical report [14]). Inference is also simpler



since the segment quality selector can be evaluated effi-
ciently.

2.2. Random Fourier Approximations

Random Fourier approximations (RF) [18, 26, 16] pro-
vide an efficient methodology to create explicit feature
transforms for non-linear kernel methods. In RF, explicit
feature vectors are created for examples so that their in-
ner products are Monte Carlo approximations of the kernel.
This is important since linear methods typically scale lin-
early in the number of training examples, whereas kernel
methods scale at least quadratically. Therefore, RF enables
accurate training with large datasets in many circumstances.

The algorithm for the change of representation has two
steps: i) Generaten random samplesγ1, . . . , γn from a dis-
tributionµ dependent on the Fourier transform of the kernel;
ii) For all examples, compute the random projection [16]

Z(u) =
[

cos(qγ1
(u) + b1), . . . , cos(qγn

(u) + bn)
]⊤

(7)

where qγ(u) is an inner product function depending on
the kernel andbi are uniform random samples drawn from
[0, 2π]. The kernels used in this paper are the Gaussian ker-
nel, whereqγ(u) = γ⊤u, for real-valued poses and the
skewed chi-square kernel for nonnegative-valued histogram
descriptors of the input [16], withqγ(u) = log(γ⊤u + c),
wherec is the kernel parameter. For details see [18, 26, 16].

After applying the RF feature transform (7) learning is
simply performed as linear least squares regression (or lin-
ear dependency estimation) on the RF feature matrix.

The RF methodology can be applied to our KDE model
in a straightforward manneri.e. by usingΦX = ZX and
ΦY = ZY . Inference in the model remains non-convex,
even for Fourier embeddings and we optimize locally us-
ing a BFGS quasi-Newton method. For optimization, the
gradient of the inference function w.r.t. the inputs needs
to be computed. The gradient in directionj, is obtained
analytically by differentiating the feature map∂ZY (y)

∂yj
=

−
∑n

k=1

∂qγk (y)

∂yj
sin(qγk

(y) + bk) to give:

∇j
1
2‖wf

⊤ΦX (r)− ΦY (y)‖2 =

= −∂ZY (y)
∂yj

(wf
⊤ZX(r)− ZY (y)) =

=
∑n

k=1

∂qγk (y)

∂yj
sin(qγk

(y) + bk)(wf
(k)ZX(r) − Z

(k)
Y (y))

(8)
We use superscripts(k), to denote the column of a matrix.

3. Augmented Output

In this section, our structured approach is extended to
predict augmented outputs in addition to the pose vector.
This helps regularize the result to valid poses. We draw
from the intuition that for a valid human pose, the propor-
tion of limb lengths are fixed. One straightforward approach

Figure 2. Illustration of the inference with the augmented kernel.

would be to include these as constraints in the inference
problem. However, when the pose is represented as 3D joint
coordinates, one convex approach to enforce this constraint
could be to use bothl1 distances andl1 constraints,e.g.,
|‖yi − yj‖1 − ‖yl − yk‖1| ≤ L. Inference with such non-
smooth and complicated constraints is neither easy nor very
elegant.

Instead, we propose to add auxiliary variables to the
original output. The log limb length ratios (LLLR)ya =

log
‖yi−yj‖

Vijkl‖yk−yl‖
of the relevant limbs are used as additional

output dimensions, whereVijkl are empirical average limb
length ratios. Then kernel dependency estimation is per-
formed on the combined output̃y =

[

y,ya

]

consisting
of 3D joint positions and auxiliary variables. During in-
ference, the following problem is solved:

argmin
ỹ,h

‖wf
⊤ΦX (rh)− ΦY (ỹ)‖2 + λ‖ya‖

2 (9)

Fig. 2 illustrates the need for regularization during in-
ference. KDE embeds from an ambient output space to a
high-dimensional space, where the original poses emerge as
a manifoldΦY (y). However, the predictionwf

⊤ΦX (rh)
can be any point in space. Inference boils down to finding
the closest pre-image in the ambient space,i.e., map back
to the manifold using the non-linear mapΦY (y). For in-
stance, the projection of predictedwf

⊤ΦX (rh) is shown
in dark blue. However, since the manifold extends to re-
gions with no training examples (extrapolation areas), the
pre-image calculation may also not produce a valid pose,
e.g.wf

⊤ΦX (r2) andwf
⊤ΦX (r3) in fig. 2. The correlation

between the augmented outputs and the pose is captured by
the nonlinear transformΦY (they will be coupled with any
orthogonal basis generated from kernel PCA), thus regu-
larization on the augmented outputs directly translates into
regularization of the ambient pose variables. This biases the
pre-image map to regions of valid outputs.

From the training pose data, we compiled all the possible
limb length ratios and plot the mean and standard deviation
in fig. 3. It can be seen that many limb pairs have fixed ra-
tios that do not change much across different subjects. We



Figure 3. Empirical measures for the log of limb length ratio
(LLLR) on the test set ground truth data show structure: mean(a)
and standard deviation (b) . In the lower row we showl1 error of
same measure (LLLR) between predictions and the ground truth
test data with KDEa (augmented) (c) and KDE (standard) model
(d) (same color scale). KDEa predicts ratios closer to the ground
truth, which partly explains its better overall performance.

choose such consistent limb ratios, and predict a 162 out-
put ya as constraint on the pose. The augmented output
approach is not confined to a 3D representation of the pose
based on joint positions. If joint angles need to be predicted,
physical angle limits or other angle constraints (e.g. direc-
tional preference) can be included.

4. Experiments

We run experiments in support of our three main contri-
butions. First, we show that coupled latent segment selec-
tion and pose prediction performs better than two indepen-
dent classification and pose estimation stages. Second, we
show that a structured model like KDE boosts pose predic-
tion performance especially in conjunction with improved
augmented kernels. Finally, we show that random Fourier
techniques extend to a structured learning framework with
nontrivial inference like the pose prediction, at no signifi-
cant loss in performance and with the added benefit of scal-
ability.

Dataset and Image Processing. We present a set of com-
prehensive experiments in the HumanEva-I dataset[21].
The dataset contains 5 motions (Box, Gestures, Jog, Throw-
Catch and Walking) from 4 subjects. Accurate image and
pose data (3D joint locations) are available for 3 subjects
and 4 motions (we discard ThrowCatch since ground truth
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Figure 4. Performance as a function of approximation dimension-
ality in input space. The output kernel of the KDE is kept fixed
throughout the experiment at 2000 dimensions while the aug-
mented kernel is approximated with 4000 dimensions.

poses could not be accurately obtained). Together, the in-
formation from the 3 color cameras, offers a relatively large
number of images and associated 3D pose data that can be
used for training and testing—in total around 34,000 ex-
amples (divided roughly equally in a train and a test set).
Ground truth segments to evaluate predictor baselines are
obtained from background subtraction using the original
code provided with the dataset. We additionally remove
shadows in order to obtain accurate bounding boxes and
segments. Note that we do not exclude data where back-
ground subtraction cannot be perfectly obtained, we only
discard invalid pose data. Performance on this dataset is
measured, in the standard way, as mean 3D joint errors, in
mm.

Our method requires generating a pool of segments for
which we use the CPMC algorithm [6] with standard pa-
rameters. Segmentation on this dataset was quite success-
ful with a mean overlap (intersection over union) of the best
segment at 72%. The image features used are pyramid block
SIFT with 3 levels (2x2, 4x4 and 8x8 cells) with 9 gradi-
ent bin orientations (0-180 degrees, unsigned) extracted on
the segment support in the image (not just its boundaries).
These features are sensitive to the accuracy of the bound-
ing box enclosing the segment so morphological operations
were applied to remove very thin, protruding regions from
segments.
Pose Prediction on Ground-truth Inputs. To calibrate
the baseline performance of our regressor, we first show re-
sults on both ground truth segments as well as CPMC’s best
overlapping segment (table 1). In all experiments that il-
lustrate KDE, KDEa, LinKDE and LinKDEa for inference,
initialization was performed using the same Kernel Ridge
Regression model (KRR) trained to predict outputs inde-
pendently. It can be seen that KDE improves over KRR but
it is also clear that it doesn’t quite manage to get the pro-
portions of the limbs right. Notice the boost in performance
achieved by KDEa when the constraints were enforced. Fig-
ure 3 shows, on the first column, the distribution of the limb



Motion KRR KDE KDEa LinKDE LinKDEa

Box 91.36 82.50 75.95 82.88 76.33
Gestures 68.96 66.89 60.24 65.35 61.70
Jog 62.09 50.26 44.92 51.64 46.54
Walking 63.75 52.40 44.18 53.57 46.41
All motions 70.11 65.50 61.28 67.79 63.70

KRR KDE KDEa LinKDE LinKDEa

86.53 78.60 71.77 78.92 70.36
81.69 76.05 71.56 76.81 72.17
54.17 45.73 40.16 45.93 41.13
55.27 44.48 37.73 45.66 38.79
65.24 63.93 58.48 63.03 59.90

Table 1. Mean per joint error (in mm) for different pose prediction models on HumanEva I data subjects 1-3 and data from allcolor cameras.
Both activity specific models and activity independent models are reported. The left table represents the results on thesegment with best
overlap with ground truth for both training and testing. Theright table shows the same results on ground truth segments for comparison.

ratios, and, on the second, the difference between the limb
ratios obtained from predictions based on KDEa and KDE,
with respect to the ground truth.

By applying the random Fourier methodology to struc-
tured models like KDE, KDEa with 400 and 6000 Fourier
embedding dimensions on inputs we obtain a performance
comparable with the kernel counterparts (with the same pa-
rameters). Notice however that linear methods scale much
better in the size of the dataset, both in training and in test-
ing. We see that indeed, even for complex models like KDE
and KDEa the approximation holds well (fig. 4).

Combined Automatic Model. In order to assess the ef-
fectiveness of our segment selection procedure we have de-
vised a set of baselines. The experiments were conducted
on the best 5 segments based on overlap. Our aim was (i)
to see if overlap is a good measure for selecting segments
if the final goal is pose prediction and (ii ) to assess the per-
formance of our selection procedure. Results are shown in
table 2. The first two columns show the 3D pose recon-
struction error using the segment selection model described
in section 2.1, with LinKDE and LinKRR for pose predic-
tion. In this experiment we use only 2000 Fourier features
for the input approximation. This explains the somewhat
lower performance compared to our previous results. The
initialization of the pose prediction models (1st step of the
algorithm) is done using the ground truth segments. We
have considered initialization using all segments, with the
ground truth overlap as a segment ranking functiong(rIh),
but found that to work less well. Therefore the rest of the
results shown in table 2 are all using LinKDE for pose pre-
diction.

To assess the performance of a purely detection-based
approach to segment selection we use the best overlap to the
ground truth as segment selector. This is a sensible candi-
date for comparisons with a detection method since it is the
perfect overlap-based selector. The third column in Table 2
shows the performance of the pose prediction model, tested
on the segments with best overlap to the ground truth. The
relatively low quality result in most cases means overlap is
not necessarily a good selection criterion if one requires ac-
curate pose prediction. In general, we usually only have
segments with ground truth overlap of around70% even in
controlled environments. The results show that the segment

Motion LinKRR LinKDE Overlap Best Mean

Box 97.44 84.61 105.31 69.12 84.59
Gestures 65.17 60.42 101.99 53.01 61.56
Jog 64.40 52.46 61.51 42.39 55.32
Walking 71.82 56.12 67.97 44.67 58.10

Table 2. Pose prediction error results (in mm) for the combined
model for segment selection and pose estimation. We also show a
simple LinKRR model baseline. LinKDE is the combined model
based on linear Fourier embeddings. Third column (Overlap)
gives pose prediction results based on the ground truth overlap
selection. ‘Best’ is the highest accuracy results result that can
be achieved by the LinKDE model if the ground truth pose were
known. ‘Mean’ gives another baseline scenario where the best 5
segments predict the output by equal voting.

having the very best overlap score was not the most infor-
mative for pose.

The 4th column of table 2 represents the best result we
can achieve. This is computed by using the ground truth
pose to select segments giving the lowest pose prediction
error. The good results in this column indicate that our
weighted KDE model is well trained and a better selection
procedure could improve it further. The last column shows
the mean error, for a model where the best 5 segments pre-
dict the output by equal voting.

Computational Efficiency. We approximate two differ-
ent kernels, one over the inputs and the other one over out-
puts. The effect of this approximation is to transform a com-
plexity that is quadratic in the size of the training set intoa
linear one. Training in this case consists of two steps: com-
putation of the Fourier features for both inputs (of dimen-
sionalitym) and outputs (of dimensionalityn) and solving a
regression problem between the two. LetN be the number
of training examples,N ≫ m andN ≫ n. The complexity
of LinKDE is O(Nm)+O(m2n+mn2) (we consider ma-
trix inversion to have quadratic complexity for simplicity).
Contrast this withO(N2) for the standard kernel method.
For training sets beyond 10,000 examples, matrix inversion
becomes difficult to perform. Moreover, for the combined
segment selection and pose estimation model presented in
§2 of the paper, our model increases 5 fold, since 5 segments
are considered per image. The matrix inversion for our ran-
dom Fourier formulation is independent ofN (though con-



Figure 5. Qualitative segmentation and 3D pose reconstructions on a clip collected from a Hollywood movie. We use LinKDEwith same
input features and parameters as in the HumanEva evaluation, but with joint angle outputs. Using our Mocap system we havecreated a
training set of 4000 examples, out of which 450 were qualitatively similar to the ones in the video and the remaining ones were different
sitting and standing poses. The purpose of this experiment is to demonstrate the potential of the method in an un-instrumented environment
and for more challenging poses.

structing the matrix is a linear operation in the number of
examples).

In an experiment shown in table 2, we assess the impact
of the input kernel approximation (here we fix the output
approximation to 2000 dimensions) on training and test-
ing times. Perhaps surprisingly, the testing time decreases
with the dimensionality of the input approximation, an ef-
fect that can be explained by the increased gradient accu-
racy for higher-dimensional models. This is also true for
the kernel version but the function evaluation is more costly
involving the input matrix which isO(N2).

We also study the impact of the output approximation di-
mensionality on training and testing times. Table 4 shows
our results for a dataset of walking motions, and using the
best segments with respect to overlap to the ground truth.
Input dimensionality is fixed throughout the experiment at
4000. Training time is almost independent of the output
approximation. Inference time however is affected, and
roughly doubles when going from 500 to 6000 dimensions.
Inference in the deterministic model is fast, but notice the
small training set, which we use in order to be able to also
perform exact calculations. The trend clearly reverses for
larger datasets where above a certain size exact calculations
become unfeasible.

5. Conclusion

We have presented a segmentation-based framework
for automatic 3D human pose reconstruction in monocular
images, based on a latent variable formulation for per-
son localization in the image (by selecting over multiple
figure-ground hypotheses) and 3D articular pose prediction.
Learning the latent model is formulated as an alternating
optimization. We give new formulations for latent kernel
dependency estimation and show that such a methodology
can be made scalable while preserving accuracy by means
of linear Fourier approximations. We also introduce
augmented structured kernels to improve the quality of
output prediction. In extensive quantitative experiments
we demonstrate that our model can jointly select accurate
segments and provides promising automatic pose prediction
results in the HumanEva benchmark. We also show results
in a clip collected from a Hollywood movie, where more
complex human poses were reconstructed. The augmented
output provides a practical approach to incorporate pose
constraints. The force one needs to exert to maintain a pose
can also be computed with a physical model [5] and used
as a prior for pose prediction. Such constraints have good
potential to improve realism and will be investigated in
future work.



Model 500 700 1000 3000 4000 6000 KDE
LinKDE -train 13 16 28 409 782 3167 109028
LinKDE -test 5739 5996 5574 5441 3831 2244 8811
LinKDE -test acc 73.56 73.03 71.99 68.28 67.32 66.58 65.57

Table 3. Running time as a function of approximation dimensionality of theinput kernel (in seconds). The results are obtained on the entire
dataset (all motions), with computations run on a Xeon 1 corewith 48GB RAM. Clearly training time is prohibitive using the deterministic
method but manageable even for high approximation dimensions using the Fourier methodology. The observed decrease in computation
time can be caused by a more accurate gradient which makes theoptimization more stable.

Model 500 700 1000 3000 5000 6000 KDE/KDEa
LinKDE -train 614.53 619.11 623.34 630.18 628.07 634.02 2219.12
LinKDE -test 285.22 288.13 289.37 437.95 613.03 698.71 642.36
LinKDEa -train 1524.99 1521.11 1520.84 1529.99 1528.16 1512.87 2224.12
LinKDEa -test 2409.01 2197.47 2525.41 2256.02 2782.98 3021.54 2444.29

Table 4. Computation time results (in seconds) for trainingand testing using our two LinKDE models with different number of random
Fourier features approximating theoutputkernel. In the rightmost column we show the performance of standard KDE. Results are reported
for a 4K dataset of walking motions, with calculations performed on a quad core Pentium processor. For LinKDEa, the kernel is computed
as a sum of 2 approximations, where the approximation of the augmented component has 2000 Fourier dimensions. The input kernel was
approximated using 4000 Fourier dimensions.
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