• Home
  • Login
  • ECCV18 Challenge
  • News
  • Papers
  • Related Datasets
  • License

Results


Testset: Measure:

Rank A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Avg
1 38 40 43 40 43 40 47 58 64 43 48 42 36 50 38 45
2 38 43 46 41 46 40 49 65 73 48 49 43 38 52 38 47
3 44 46 50 47 56 47 52 63 70 54 54 48 46 58 46 52
4 53 54 54 52 56 55 58 70 78 60 59 57 48 61 56 58
5 53 52 52 53 55 55 54 71 84 56 60 58 51 64 57 58
6 52 56 55 51 57 53 64 73 81 61 60 57 49 61 53 59
7 51 53 58 52 64 53 67 94 132 65 64 57 53 67 53 66
8 58 59 64 62 65 60 68 77 92 65 68 62 60 70 59 66

• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
      A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
      A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
      A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together

• CHALL_H80K is the Human80K testset (25K examples) for the ECCV 2018 PoseTrack Challenge



Challenge Participants


1)  Istvan Sarandi
2)  Xiao Sun
3)  Georgios Pavlakos
4)  Shen Yuejia
5)  Sungheon Park
6)  Zhou Ye Jiang
7)  Helge Rhodin
8)  Tyler Zhu
Rank A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Avg

• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
      A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
      A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
      A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together

• CHALL_H80K is the Human80K testset (25K examples) for the ECCV 2018 PoseTrack Challenge



Challenge Participants


Rank A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Avg
1 54 53 53 57 61 55 64 80 102 60 67 55 54 68 58 63
2 76 70 74 84 77 77 107 118 156 77 110 83 76 109 75 92
3 95 83 85 99 93 91 116 124 175 91 116 95 91 115 97 105
4 127 112 109 135 121 131 146 164 229 121 149 130 112 150 132 139

• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
      A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
      A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
      A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together

• H80K is the Human80K testset (25K examples)



Description


1)  A.-I. Popa, M. Zanfir, C. Sminchisescu. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. IEEE Computer Vision and Pattern Recognition 2017.
2)  Kernel dependency estimation regressor on O2PL features i.e. KDE-O2LP-rlpRF method from the paper:
C. Ionescu, J. Carreira, and C. Sminchisescu. Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation. IEEE Computer Vision and Pattern Recognition 2014.
See also our project page for details.
3)  Ridge regressor (RR) on O2PL features i.e. RR-O2LP-rlpRF method from the paper:
C. Ionescu, J. Carreira, and C. Sminchisescu. Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation. IEEE Computer Vision and Pattern Recognition 2014.
4)  Ridge regressor (RR) on exponentiated chi square (approximated with random features) of HoG features i.e. RR-exp(chi2) from the paper:
C. Ionescu, J. Carreira, and C. Sminchisescu. Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation. IEEE Computer Vision and Pattern Recognition 2014.
Rank A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Avg

• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
      A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
      A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
      A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together

• H80K is the Human80K testset (25K examples)



Description


Rank A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Avg
1 31 33 41 34 41 37 37 51 56 43 44 37 33 42 32 39
2 40 36 44 39 44 42 41 66 70 46 49 43 34 46 34 45
3 42 44 52 47 54 48 49 66 76 54 61 47 44 55 44 52
4 51 50 54 54 62 57 54 72 76 62 65 59 49 61 54 58
5 49 47 51 52 60 56 56 82 94 64 69 61 48 66 49 60
6 54 54 63 59 72 61 68 101 109 74 81 62 55 75 60 69
7 60 56 68 64 78 67 68 106 119 77 85 64 57 78 62 73
8 91 89 94 102 105 99 112 151 239 109 151 106 101 141 106 119
9 117 108 91 129 104 130 134 135 200 117 195 132 115 162 156 133
10 123 122 121 140 125 148 157 162 212 132 205 147 124 176 158 148
11 133 133 130 150 137 157 168 173 239 147 219 160 135 194 172 161
12 152 153 125 171 135 180 162 168 221 160 241 176 157 201 187 171

• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
      A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
      A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
      A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together

• H36M_NOS10 is the Human3.6M testset without subject S10 (about 800K examples).



Description


1)  D.C. Luvizon, H. Tabia, D. Picard Consensus-based Optimization for 3D Human Pose Estimation in Camera Coordinates, preprint arXiv:1911.09245 (2019), *multi-view GT calibration*
2)  D.C. Luvizon, H. Tabia, D. Picard Consensus-based Optimization for 3D Human Pose Estimation in Camera Coordinates, preprint arXiv:1911.09245 (2019), *multi-view estimated calibration*
3)  D.C. Luvizon, H. Tabia, D. Picard Consensus-based Optimization for 3D Human Pose Estimation in Camera Coordinates, preprint arXiv:1911.09245 (2019), *monocular*
4)  2) Anonymous NIPS18 submission, PaperID: 494, FBI-Pose: Towards Bridging the Gap between 2D Images and 3D Human Poses using Forward-or-Backward Information(Update)
5)  Anonymous NIPS18 submission, PaperID: 5104, Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images
6)  A. Zanfir, E. Marinoiu, C. Sminchisescu Monocular 3D Pose and Shape Estimation of Multiple People in Natural Scenes - The Importance of Multiple Scene Constraints, IEEE Computer Vision and Pattern Recognition 2018.
7)  A.-I. Popa, M. Zanfir, C. Sminchisescu. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. IEEE Computer Vision and Pattern Recognition 2017.
8)  3D Convolutional Neural Network. The details of the method can be found in the paper: Agne Grinciunaite, Amogh Gudi, Emrah Tasli, Marten den Uyl, Human Pose Estimation in Space and Time using 3D CNN, *arXiv preprint arXiv:1609.00036* (2016).
9)  Linear (random feature) approximation of the kernel dependency estimation (LinKDE) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details of the method can be found in the paper:
Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.
10)  Kernel ridge regression (KRR) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details of the method can be found in the paper:
Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014
11)  Linear (random feature) approximation of the kernel ridge regression (LinKRR) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details of the method can be found in the paper:
Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.
12)  Nearest neighbor (KNN) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details of the method can be found in the paper:
Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.
Rank A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Avg

• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
      A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
      A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
      A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together

• H36M_NOS10 is the Human3.6M testset without subject S10 (about 800K examples).



Description


Rank A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Avg
1 123 115 95 141 111 144 136 140 200 116 197 145 114 164 150 138
2 131 130 119 145 130 157 158 162 215 135 200 155 120 177 151 151
3 140 139 130 156 136 167 169 174 239 145 213 163 130 190 161 162
4 164 166 135 188 143 198 173 176 234 167 245 194 160 216 189 182

• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
      A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
      A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
      A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together

• H36M is the full Human3.6M test set (1.2 million examples).



Description


1)  Linear (random feature) approximation of the kernel dependency estimation (LinKDE) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details can be found in the paper:
Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014
2)  Kernel ridge regression (KRR) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details can be found in the paper:
Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014
3)  Linear (random feature) approximation of the kernel ridge regression (LinKRR) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details can be found in the paper:
Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014
4)  Nearest neighbor (KNN) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details can be found in the paper:
Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014
Rank A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 Avg

• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
      A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
      A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
      A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together

• H36M is the full Human3.6M test set (1.2 million examples).



Description


Rank MR1 MR2 MR3 MR4 MR5 MR6 MR7 Avg

• MR1-MR7 denote the set of 7 mixed reality videos available for download.

Description


Rank MR1 MR2 MR3 MR4 MR5 MR6 MR7 Avg

• MR1-MR7 denote the set of 7 mixed reality videos available for download.

Description


Rank acc_class_all acc_class_silh acc_pixel_all acc_pixel_silh
1 0.74 0.73 0.92 0.81

• These are the rankings for the human part labeling task on H80K under different accuracy metrics
• H80K is the Human80K testset (25K examples)



Description


1)  A.-I. Popa, M. Zanfir, C. Sminchisescu. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. IEEE Computer Vision and Pattern Recognition 2017.
Rank acc_class_all acc_class_silh acc_pixel_all acc_pixel_silh
1 0.74 0.73 0.92 0.81

• These are the rankings for the human part labeling task on H80K under different accuracy metrics
• H80K is the Human80K testset (25K examples)



Description


1)  A.-I. Popa, M. Zanfir, C. Sminchisescu. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. IEEE Computer Vision and Pattern Recognition 2017.