Testset: Measure:
Rank | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 38 | 40 | 43 | 40 | 43 | 40 | 47 | 58 | 64 | 43 | 48 | 42 | 36 | 50 | 38 | 45 |
2 | 38 | 43 | 46 | 41 | 46 | 40 | 49 | 65 | 73 | 48 | 49 | 43 | 38 | 52 | 38 | 47 |
3 | 44 | 46 | 50 | 47 | 56 | 47 | 52 | 63 | 70 | 54 | 54 | 48 | 46 | 58 | 46 | 52 |
4 | 53 | 54 | 54 | 52 | 56 | 55 | 58 | 70 | 78 | 60 | 59 | 57 | 48 | 61 | 56 | 58 |
5 | 53 | 52 | 52 | 53 | 55 | 55 | 54 | 71 | 84 | 56 | 60 | 58 | 51 | 64 | 57 | 58 |
6 | 52 | 56 | 55 | 51 | 57 | 53 | 64 | 73 | 81 | 61 | 60 | 57 | 49 | 61 | 53 | 59 |
7 | 51 | 53 | 58 | 52 | 64 | 53 | 67 | 94 | 132 | 65 | 64 | 57 | 53 | 67 | 53 | 66 |
8 | 58 | 59 | 64 | 62 | 65 | 60 | 68 | 77 | 92 | 65 | 68 | 62 | 60 | 70 | 59 | 66 |
• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together
• CHALL_H80K is the Human80K testset (25K examples) for the ECCV 2018 PoseTrack Challenge
1) Istvan Sarandi |
2) Xiao Sun |
3) Georgios Pavlakos |
4) Shen Yuejia |
5) Sungheon Park |
6) Zhou Ye Jiang |
7) Helge Rhodin |
8) Tyler Zhu |
Rank | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Avg |
---|
• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together
• CHALL_H80K is the Human80K testset (25K examples) for the ECCV 2018 PoseTrack Challenge
Rank | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 54 | 53 | 53 | 57 | 61 | 55 | 64 | 80 | 102 | 60 | 67 | 55 | 54 | 68 | 58 | 63 |
2 | 76 | 70 | 74 | 84 | 77 | 77 | 107 | 118 | 156 | 77 | 110 | 83 | 76 | 109 | 75 | 92 |
3 | 95 | 83 | 85 | 99 | 93 | 91 | 116 | 124 | 175 | 91 | 116 | 95 | 91 | 115 | 97 | 105 |
4 | 127 | 112 | 109 | 135 | 121 | 131 | 146 | 164 | 229 | 121 | 149 | 130 | 112 | 150 | 132 | 139 |
• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together
• H80K is the Human80K testset (25K examples)
1) A.-I. Popa, M. Zanfir, C. Sminchisescu. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. IEEE Computer Vision and Pattern Recognition 2017. |
2) Kernel dependency estimation regressor on O2PL features i.e. KDE-O2LP-rlpRF method from the paper: C. Ionescu, J. Carreira, and C. Sminchisescu. Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation. IEEE Computer Vision and Pattern Recognition 2014. See also our project page for details. |
3) Ridge regressor (RR) on O2PL features i.e. RR-O2LP-rlpRF method from the paper: C. Ionescu, J. Carreira, and C. Sminchisescu. Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation. IEEE Computer Vision and Pattern Recognition 2014. |
4) Ridge regressor (RR) on exponentiated chi square (approximated with random features) of HoG features i.e. RR-exp(chi2) from the paper: C. Ionescu, J. Carreira, and C. Sminchisescu. Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation. IEEE Computer Vision and Pattern Recognition 2014. |
Rank | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Avg |
---|
• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together
• H80K is the Human80K testset (25K examples)
Rank | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 31 | 33 | 41 | 34 | 41 | 37 | 37 | 51 | 56 | 43 | 44 | 37 | 33 | 42 | 32 | 39 |
2 | 40 | 36 | 44 | 39 | 44 | 42 | 41 | 66 | 70 | 46 | 49 | 43 | 34 | 46 | 34 | 45 |
3 | 42 | 44 | 52 | 47 | 54 | 48 | 49 | 66 | 76 | 54 | 61 | 47 | 44 | 55 | 44 | 52 |
4 | 51 | 50 | 54 | 54 | 62 | 57 | 54 | 72 | 76 | 62 | 65 | 59 | 49 | 61 | 54 | 58 |
5 | 49 | 47 | 51 | 52 | 60 | 56 | 56 | 82 | 94 | 64 | 69 | 61 | 48 | 66 | 49 | 60 |
6 | 54 | 54 | 63 | 59 | 72 | 61 | 68 | 101 | 109 | 74 | 81 | 62 | 55 | 75 | 60 | 69 |
7 | 60 | 56 | 68 | 64 | 78 | 67 | 68 | 106 | 119 | 77 | 85 | 64 | 57 | 78 | 62 | 73 |
8 | 91 | 89 | 94 | 102 | 105 | 99 | 112 | 151 | 239 | 109 | 151 | 106 | 101 | 141 | 106 | 119 |
9 | 117 | 108 | 91 | 129 | 104 | 130 | 134 | 135 | 200 | 117 | 195 | 132 | 115 | 162 | 156 | 133 |
10 | 123 | 122 | 121 | 140 | 125 | 148 | 157 | 162 | 212 | 132 | 205 | 147 | 124 | 176 | 158 | 148 |
11 | 133 | 133 | 130 | 150 | 137 | 157 | 168 | 173 | 239 | 147 | 219 | 160 | 135 | 194 | 172 | 161 |
12 | 152 | 153 | 125 | 171 | 135 | 180 | 162 | 168 | 221 | 160 | 241 | 176 | 157 | 201 | 187 | 171 |
• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together
• H36M_NOS10 is the Human3.6M testset without subject S10 (about 800K examples).
1) D.C. Luvizon, H. Tabia, D. Picard Consensus-based Optimization for 3D Human Pose Estimation in Camera Coordinates, preprint arXiv:1911.09245 (2019), *multi-view GT calibration* |
2) D.C. Luvizon, H. Tabia, D. Picard Consensus-based Optimization for 3D Human Pose Estimation in Camera Coordinates, preprint arXiv:1911.09245 (2019), *multi-view estimated calibration* |
3) D.C. Luvizon, H. Tabia, D. Picard Consensus-based Optimization for 3D Human Pose Estimation in Camera Coordinates, preprint arXiv:1911.09245 (2019), *monocular* |
4) 2) Anonymous NIPS18 submission, PaperID: 494, FBI-Pose: Towards Bridging the Gap between 2D Images and 3D Human Poses using Forward-or-Backward Information(Update) |
5) Anonymous NIPS18 submission, PaperID: 5104, Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images |
6) A. Zanfir, E. Marinoiu, C. Sminchisescu Monocular 3D Pose and Shape Estimation of Multiple People in Natural Scenes - The Importance of Multiple Scene Constraints, IEEE Computer Vision and Pattern Recognition 2018. |
7) A.-I. Popa, M. Zanfir, C. Sminchisescu. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. IEEE Computer Vision and Pattern Recognition 2017. |
8) 3D Convolutional Neural Network. The details of the method can be found in the paper: Agne Grinciunaite, Amogh Gudi, Emrah Tasli, Marten den Uyl, Human Pose Estimation in Space and Time using 3D CNN, *arXiv preprint arXiv:1609.00036* (2016). |
9) Linear (random feature) approximation of the kernel dependency estimation (LinKDE) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details of the method can be found in the paper: Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014. |
10) Kernel ridge regression (KRR) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details of the method can be found in the paper: Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014 |
11) Linear (random feature) approximation of the kernel ridge regression (LinKRR) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details of the method can be found in the paper: Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014. |
12) Nearest neighbor (KNN) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details of the method can be found in the paper: Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014. |
Rank | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Avg |
---|
• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together
• H36M_NOS10 is the Human3.6M testset without subject S10 (about 800K examples).
Rank | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Avg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 123 | 115 | 95 | 141 | 111 | 144 | 136 | 140 | 200 | 116 | 197 | 145 | 114 | 164 | 150 | 138 |
2 | 131 | 130 | 119 | 145 | 130 | 157 | 158 | 162 | 215 | 135 | 200 | 155 | 120 | 177 | 151 | 151 |
3 | 140 | 139 | 130 | 156 | 136 | 167 | 169 | 174 | 239 | 145 | 213 | 163 | 130 | 190 | 161 | 162 |
4 | 164 | 166 | 135 | 188 | 143 | 198 | 173 | 176 | 234 | 167 | 245 | 194 | 160 | 216 | 189 | 182 |
• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together
• H36M is the full Human3.6M test set (1.2 million examples).
1) Linear (random feature) approximation of the kernel dependency estimation (LinKDE) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details can be found in the paper: Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014 |
2) Kernel ridge regression (KRR) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details can be found in the paper: Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014 |
3) Linear (random feature) approximation of the kernel ridge regression (LinKRR) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details can be found in the paper: Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014 |
4) Nearest neighbor (KNN) method using a pyramid of SIFTs extracted on images on which a background subtraction mask (BS) was applied. The details can be found in the paper: Catalin Ionescu, Dragos Papava, Vlad Olaru and Cristian Sminchisescu, Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014 |
Rank | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | Avg |
---|
• A1-A15 denotes the motion scenario index described in the Human3.6M dataset.
A1 - Directions; A2 - Discussion; A3 - Eating; A4 - Greeting; A5 - Phone Call
A6 - Posing; A7 - Purchases; A8 - Sitting; A9 - Sitting Down; A10- Smoking
A11- Taking Photo; A12- Waiting; A13- Walking; A14- Walking Dog; A15- Walking Together
• H36M is the full Human3.6M test set (1.2 million examples).
Rank | MR1 | MR2 | MR3 | MR4 | MR5 | MR6 | MR7 | Avg |
---|
• MR1-MR7 denote the set of 7 mixed reality videos available for download.
Rank | MR1 | MR2 | MR3 | MR4 | MR5 | MR6 | MR7 | Avg |
---|
• MR1-MR7 denote the set of 7 mixed reality videos available for download.
Rank | acc_class_all | acc_class_silh | acc_pixel_all | acc_pixel_silh |
---|---|---|---|---|
1 | 0.74 | 0.73 | 0.92 | 0.81 |
• These are the rankings for the human part labeling task on H80K under different accuracy metrics
• H80K is the Human80K testset (25K examples)
1) A.-I. Popa, M. Zanfir, C. Sminchisescu. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. IEEE Computer Vision and Pattern Recognition 2017. |
Rank | acc_class_all | acc_class_silh | acc_pixel_all | acc_pixel_silh |
---|---|---|---|---|
1 | 0.74 | 0.73 | 0.92 | 0.81 |
• These are the rankings for the human part labeling task on H80K under different accuracy metrics
• H80K is the Human80K testset (25K examples)
1) A.-I. Popa, M. Zanfir, C. Sminchisescu. Deep Multitask Architecture for Integrated 2D and 3D Human Sensing. IEEE Computer Vision and Pattern Recognition 2017. |